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We study fixed-flux convection in a long, narrow slot which is inclined to the 
horizontal. (Gravity is in the vertical direction, and horizontal is perpendicular to 
this.) Because of the fixed-flux boundary conditions the convective modes have much 
larger lengthscales in the along-slot direction than in the transverse direction. In the 
case of a horizontal slot this disparity in scales has been previously exploited to 
obtain an amplitude equation for the single mode which first becomes unstable a8 the 
Rayleigh number is increased above critical. When the slot is tilted we show that 
there is a distinguished limit in which there are two active modes in the slightly 
supercritical regime. This new limit is when the horizontal wavenumber, the 
supercriticality, and the tilt of the slot away from vertical, are all small. A 
modification of the well-known expansion for fixed flux convection in a horizontal 
slot leads to a coupled system of partial differential equations for the amplitudes of 
the two modes. 

Numerical solution of this system suggests that all initial conditions eventually 
evolve into one of the two states, both of which consist of a single, steady roll in the 
cavity. The states are distinguished by the direction of circulation of the roll, and by 
the buoyancy fields, which are quite different in the two cases. 

1. Introduction and background 
Convection between poorly conducting boundaries, through which a flux of 

buoyant contaminant is imposed, has been recognized as an analytic avenue into a 
strongly nonlinear regime. Remarkable simplifications are possible because the most 
unstable modes have large horizontal lengthscales relative to the depth of the layer. 
Thus the vertical structure of the dynamical variables, such as buoyancy and stream 
function, can be explicitly calculated while the evolution of the horizontal structure 
is obtained from a derived amplitude equation. The prototypical example is that of 
Chapman & Proctor (1980) in which a Boussinesq fluid convects between horizontal 
surfaces. The implications of this model for convection in the Earth’s mantle are 
discussed by Chapman, Childress & Proctor (1980). 

Other examples in which the extreme aspect ratio of the convective modes can be 
exploited include mildly penetrative convection (Roberts 1985), non-Boussineeq 
convection (Depassier & Spiegel 1982), and bioconvection (Childress & Spiegel 1992). 

In all of the works we have mentioned the surfaces which confine the fluid are 
horizontal and gravity is normal to them. The result of the expansion is a partial 
differential equation of the form 
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FIGURE 1 .  Definition sketch of the geometry of the tilted slot. The slot is horizontal when 0 = 0 
and vertical when B = in. 

where we indicated the most important terms up to  third order in f. The quadratic 
terms in (1.1) result from breaking of the Boussinesq symmetry by temperature- 
dependent material properties, mixed boundary conditions, nonlinearity in the 
equation of state, etc. f(z,t) is the amplitude of the mode which becomes linearly 
unstable when the critical Rayleigh number is exceeded. 

In  this article we discuss the consequences of tilting the layer of fluid relative to 
the gravity vector, g. The geometry is illustrated in figure 1 where we suppose that 
2-g  = -gcosI9. In  all of our earlier references the slot is horizontal so that 8 = 0. In  
a study of thermohaline planform selection Proctor & Holyer (1986) studied the 
complementary case of perfectly vertical cells (I9 = in). We find that there is a 
distinguished limit when I9 is very close to in,  so that the slot is almost vertical. As 
in the earlier study of Proctor & Holyer (1986) there is more than one active mode. 
In our case the analogue of (1.1) is a system of two coupled partial differential 
equations for the modal amplitudes. When I9 = in the system reduces to a special case 
of the multimode description given by Proctor & Holyer (1986). We recover (1.1) as 
a special case of our system when the departure of 8 from in becomes large, and one 
of the two modes becomes very stable. The purpose of the present work is to clarify 
the role of slight departures from a perfectly vertical geometry and so to present a 
unified framework which describes single-component fixed-flux convection in large- 
aspect-ratio containers. 

The expansion described below captures the qualitative features of several other 
examples of convection in narrow inclined slots. For example Phillips (1970) 
discusses steady convective motion in an inclined liquid-filled fissure. In this example 
motion is sustained because there is a buoyancy flux in the x-direction, i.e. along the 
axis of the fissure. The problem of a perfectly horizontal cavity (I9 = 0 ) ,  again forced 
by a flux in the x-direction, has been discussed in detail by Cormack, Leal & Imberger 
(1974a), Cormack, Leal & Seinfeld (1974b) and Imberger (1974). These examples 
motivate an additional geometric complication which is not indicated in figure 1 : we 
allow the direction of the externally imposed flux to be at an angle 6 to the vertical. 
When 0 = 8' (e.g. Chapman & Proctor 1980 where both of these angles are zero or 
Proctor & Holyer 1986 where they are both in) there is a motionless conductive state 
which becomes unstable when a critical Rayleigh number is exceeded. However, if 
these two angles are unequal, as in Phillips (1970), then convection occurs a t  zero 
Rayleigh number. In the expansion below we clarify this point by showing that there 
is a forcing parameter, /3, proportional to O-O', in the amplitude equations (2.29). 

Because of its geophysical importance, fixed-flux convection in tilted fluid layers 
has also been discussed in the context of porous media (Lapwood convection). Riley 
& Winters (1990) is a recent study with a thorough review of the literature on 
Lapwood convection. Because Riley & Winters restrict attention to a squaxe cavity 
their results (numerical solutions of the unreduced partial differential equations) are 
not directly comparable to  the present work which uses an aspect-ratio expansion to 
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obtain the amplitude equations in (2.29). However, Sen, Vasseur & Robillard (1988) 
and Linz (1990) use the Darcy resistance law in the momentum equations and the 
'parallel flow approximation ' to obtain analytic solutions in the central portion of an 
inclined cavity. The parallel flow approximation is similar in spirit to  the approach 
of Phillips (1970) and Cormack et ul. ( 1 9 7 4 ~ ) .  In these works it is assumed that the 
axial lengthscale is infinite so that the velocity is strictly unidirectional and varies 
only in the cross-channel direction. The numerical solutions of Sen et al. (1988) show 
that this is appropriate in the middle of the cavity, where the influence of the 
endwalls is negligible. The aspect-ratio expansion developed here includes this 
approximation as a special case: here the variations along the axis of the channel 
have a finite lengthscale which is much greater than the depth of the cavity. The 
parallel flow approximation corresponds to  the steady solution of (1 .1)  in whichf, is 
a constant. (This requires that the non-Boussinesq term (f2)),, be absent.) 

2. The expansion 

1. The aspect ratio is 

and we suppose that this non-dimensional parameter is very small: e 4 1. The 
coordinates are Cartesian with -9 < z < 9 and -$l < x < $1. The gravity vector is 

g = g(sinOx-cosOz), (2.2) 

We consider a layer of Boussinesq fluid contained in a slot of depth d and length 

8 = d / l ,  (2.1) 

where x and z are unit vectors in the x- and z-directions. When 6 = 0 the slot is 
horizontal and when 6 = $n the slot is vertical. 

The density of the fluid is represented as 

P = PO(1 -g-*B), (2.3) 

where 3 is the buoyancy. External sources of buoyancy impose a constant flux 
through the layer and we suppose that the flux vector is directed at an angle 6' to 
the vertical. Thus the buoyancy can be written as 

B = r(sinB'x-cosB'z)+b, (2.4) 
where r(s in  B'x - cos 6'2)  is the basic state stratification and b is the buoyancy 
perturbation produced by motion of the fluid. The basic state stratification in (2.4) 
satisfies the boundary conditions on the normal derivative of 97 required by the 
externally imposed flux. Thus the boundary condition on the field induced by the 
motion of the fluid, b,  is 

KVb-n = 0,  (2.5) 

where K is the diffusivity of buoyancy and n is the unit normal to the walls of the 
cavity. 

The motion is assumed to  be two-dimensional, so that we can use a stream function 

u = $ z ,  w = --I),, c =  V2$ = - w x u . y ,  (2.6) 

<t+ucx-tw[z = vV2[-sin6bZ-cos6b,+rsin (6-87,  (2.7) 

b,+u(rsinO'+b,)+w( -rcosB'+b,) = KV2b. (2.8) 

and write the vorticity equation as 

where v is the viscosity. The buoyancy equation is 

3 FLY 237 
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If the buoyancy flux is parallel to gravity, so that 0 = 8', then there is a conductive 
solution of (2.7) and (2.8), i.e. $ = b = 0. This motionless state becomes unstable to  
convection when the externally imposed buoyancy gradient, r, exceeds a critical 
value. In Chapman & Proctor (1980), 0 = 0' = 0 and in Proctor & Holyer (1986), 
,g=B'=In .  

When 0 + 0' there is no conductive solution and small external buoyancy sources 
produce convection. In Cormack et al. (1974a, b ) ,  and Imberger (1974) the slot is 
horizontal (0 = O),  and the flux is perpendicular to gravity so that B' = in. In Elder 
(1965) the slot is vertical (0 = in), and again the flux is perpendicular t o  gravity so 
that in this case 8' = 0. (Elder used fixed temperature, rather than fixed flux, so that 
the following analysis does not apply directly to his configuration.) 

2 

2.1. Non-dimensional variables and the distinguished l imit  
Convenient non-dimensional variables arc 

x = 12, z = dz", t = ( l z / K ) i ,  $ = E K ~ ,  b = e d d .  (2.9) 

Dropping the hats, the non-dimensional equations of motion are 

Pr-1s2(ct+$zc,-$xcx) = V2~-sinBRab,-ccosBRab,+e-'sin(8-B')Ra, (2.10a) 

e2(b,+$2b,-$Tgb,) = -sin0$z-ecos0$,+V2b, (2.10b) 

where V2 = e2 a: + a: and c = e2$,, + $.,,. The five non-dimensional parameters are 
the angles, 0 and B', the aspect ratio in (2.1), and the Rayleigh and Prandtl numbers 

d 4 r  V 
Yr = -. Ra = -, 

V K  K 
(2.11) 

The expansion we use below is in powers of e z :  

($> b )  = ( $ 0 ,  b,) +ez($z,  b z )  +. . . (2.12) 

and is based on the distinguished limit 0+in  and B'+0, as s+O. We introduce 

x E e-'cosB and q5 = ~ - ~ s i n ( 0 - B ' ) R a  (2.13) 

into (2.10), and fix x and $ while E + O .  Thus the expansion pivots around the 
configuration in which the slot is vertical (0 = in) and the bottom endwall (x = 61 in 
figure 1) is heated with constant flux, while the upper endwall (x = --il in figure 1) 
is cooled to the same rate so that the net amount of heat in the fluid does not change. 
Thus the heat flux is also vertical (8'= $7~). To recover this purely vertical 
configuration one takes x = q5 = 0 in the following expansion. 

When q5 = 0 there is a conductive basic state which becomes unstable to 
convection when Ra > R,. The unknown critical Rayleigh number, R,, will emerge as 
the expansion unfolds. We suppose that the Rayleigh number differs slightly from 
the critical value and define R, by 

Ra = R, + 2R,. (2.14) 

With this new notation the vorticity equation is 

~ ~ - 1 ~ z ( a ~  + a, +, a, - a, $o a,) a; +, = (a: + 2 2  a; a:) (7cr0 + +2) 

-[1 - E ' ( ~ X ' ) ]  (Ro+~2Rz)~L(bO+~2bz)-~EQ~Rn~xbo+~2q5, (2.15) 

where terms of order e4 have been suppressed. We find below that the amplitude 
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equations emerge a t  E~ (i.e. a t  the second level in the expansion) so that these terms 
are not needed. Likewise the buoyancy equation is 

2 1  2 ~ 2 ~ ~ t + ~ , $ o ~ , - ~ , ~ o ~ , ) b ,  = - [ I - €  (zx ) 1 a , ( $ 0 + ~ 2 $ 2 )  

- e2x a, $, + (a,” + e2 a:) (b ,  + &,). (2.16) 

2.2. The zero-order solution 

Collecting the terms of order e0 we have the system 

(2.17) 

Because the boundary conditions a t  z = f & are a, b, = $, = 0 one can easily integrate 
the second equation and then substitution gives a fourth-order boundary-value 
problem for $,. We write the solution in the form 

$, = X(z, t ) F ( z )  and b, = A(z, t )  G(z) + B ( x ,  t )  (2.18) 

where X(z, t )  and 8(z, t )  are amplitudes whose evolution is determined at next order. 
The shape functions, F ( z )  and G(z), and the critical Rayleigh number, 
RO, are obtained by solving the eigenvalue problem 

FiV-R,F=O and G ‘ = F .  (2.19) 

The boundary conditions are no normal flow through the walls of the channel 

F( *i) = 0, (2.20) 

and one of the three possibilities: ( a )  slip: F”( f$) = 0 ;  ( b )  no slip: F’( &$) = 0; (c) 
mixed: F’( -$) = F”(i) = 0. To specify a unique solution of (2.19) and (2.20) we also 
require the normalization 

p =  1 and O = O ,  (2.21) 

where the overbar denotes an average over the depth of the fluid 

f =  fdz. (2.22) sj; 
The simplest choice of boundary condition is case (a) so that R, = n4, F = 4 2  cos (nz) 
and G(z) = (2/2/n) sin (nz). The two other cases are given in Appendix A. 

The leading-order solution in (2.18) is a linear superposition of two modes, A“ and 
B. This distinguishes the present expansion from that of Chapman & Proctor (1980) 
and Normand (1984). Chapman & Proctor’s single-mode amplitude equation will be 
contained as a special case (x+ 00) in which limit the 2 mode is ‘slaved’ to the B 
mode. Normand did not include the B mode in the leading-order solution and 
consequently did not obtain the correct amplitude equation. In fact we find that with 
both modes in (2.18) the nonlinearity is quadratic and a consistent system is obtained 
a t  next order, e4. With only the 2 mode one finds an amplitude equation with a cubic 
nonlinearity a t  order 8. 

2.3. The jirst-order solution and the solvability condition 
At next order, e2, one has 

8; $2 - R, a, b2 = Pr-’[& F +AXz HI - 2Xz, F 
+ [R2- ( $ ~ 2 ) R o ] ~ F + ~ R , ( ~ , G + B , ) - $ ,  ( 2 . 2 3 ~ )  

(2.23 b )  

a; b, - a, $2 = A, G +XXz  J +Bt +XB,F - ($x2) XF’ 
+ xX, F -A”,, G -8,., 

3-2 
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where we have introduced 
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H = F 2 - F F "  and J = F'G-G'F. (2.24) 

The solvability condition for the B mode is simply the vertical integral of (2.236). 

f i t  = -xFX,+B,,+(X2),. (2.25) 

The solvability condition for the A' mode is obtained by multiplying (2.23a) by F 
and (2.233) by G. Averaging over z ,  and then eliminating F a ,  b,, gives the second 
amplitude equation : 

Noting that J = - 2 gives us the first amplitude equation : 

[R, @ + Pr-'F'2] a, = [R, - x2R,] 2 + [2F'2 + R, p] ax, 
+ R, xF8, + R,XB, + [ P r - ' m -  R, G J ] h i ,  -P$. (2.26) 

2.4. The canonical f o r m  of the amplitude equations 
We now put the amplitude equations in a canonical form using some cosmetic 
resealing, 

X =  aA and B =  a2B, (2.27) 

where ct = (U2;1F'2 + G2)i. (2.28) 

In terms of these rescaled variables we have 

_ _  

PA, = rA + cB, +A,,  + AB, + y ( A 2 ) ,  - /3, (2.29 a )  

Bt = -cA,+B,.+ (A'),, (2.29b) 
where the coefficients are 

, c = - ,  

(2.30) 

R2 - x2R, 
R, a2 R, u2 

Pr-'F'H + R, ?X7 , p- & 
2R, u R, a3' 

Equation (2.29) is the final form of our amplitude equations. In Appendix A we 
have summarized the calculation of the five coefficients, p ,  r ,  c,  y and /?, for the three 
sets of boundary conditions. In  the next section we discuss some limiting cases of the 
system in (2.29). 

To conclude this section we state the boundary conditions applied to (2.29). To 
avoid a detailed analysis of flow near the endwalls we adopt 

A (  &;) = 0 and B,( &i) = 0. (2.31) 

We give a heuristic justification for this choice by noting that with the boundary 
conditions in (2.31) the integral of (2.29b) over the length of the slot is 

(2.32) 

Thus the integral of the leading-order buoyancy perturbation, b, in (2.18), over the 
area of the slot is constant in time, and this is consistent with the exact no-flux 
condition in (2.5). Also the requirement A (  ki) = 0 ensures that the leading-order 
approximation to the stream function, 1cr,,, satisfies the condition of no mass flux 
through the endwalls. 
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3. Properties of the amplitude equations 
3.1.  The linear problem 

We begin our analysis of the amplitude equations in (2.29) with a discussion of the 
unforced (p = 0), associated linear problcm 

Substituting [ A ,  B] = [d,B] exp ( i k x f s t )  gives the dispersion relation 

ps2 + [( 1 + p )  kz  - r ]  s + k4 - k2(c2+ r )  = 0. (3.2) 

For the moment we ignore the boundary conditions at x = &; and suppose that k is 
a continuous variable. 

The structure of the roots is summarized in figure 2. We fix c and p and decrease 
r ,  starting with r > cz in panel ( a )  of figure 1 and concluding with r = - c 2  in panel 
( f ) .  Fixing c and p is equivalent to fixing the Prandtl number, Pr, and the tilt, 8. 
Decreasing r is then accomplished by decreasing Ra. Thus in the parameter plane 
shown in figure 3 we are descending along the vertical line and the points labelled 
(a-f)  on this curve correspond to  the dispersion curves in the various parts of figure 
2. 

Figure 2 ( a )  shows that when r > c2 the most unstable wavenumber is k = 0. In  
addition there is a stable branch which is, however, neutral a t  k = 0. In  figure 2 (b ,  c) 
we show that as r decreases below c2 the most unstable wavenumber moves away 
from k = 0 while there is no change in the structure of the stable branch. When 
r Q 0 (figures 2d and 2e)  there is an important change in the configuration of the 
branches. The unstable branch now passes through the origin, (k, s) = (0, 0), while the 
stable branch is now damped rather than neutral a t  k = 0. Finally, in figure 2 f, when 
r < -2, the instability disappears. 

In the parameter plane of figure 3 there are two important landmarks indicated by 
the solid curves. First there is the stability boundary, r = -2 which passes through 
point ( f  ). Using the results from Appendix A for slip boundary conditions, this curve 
is 

(3.3) 

The almost coincident dashed curve is the result of an exact calculation of the 
stability boundary (see Appendix B). There is excellent agreement between the 
approximation and the exact result even when B = 0. 

The second landmark in the parameter plane is the curve on which there is the 
exchange of modal identity shown in figure 2 ( 4 .  This is the solid curve in figure 3 
which passes through point (d). On this curve r = 0, or for slip boundary conditions, 

Ra = x4 + (x4 - 8x7 cos' 8. 

Ra = x4( 1 + cos2 8). (3.4) 

Once again, an exact calculation of this curve is given in Appendix B (the result is 
Ra = x4/sin2 8)  and is shown as dashed in figure 3. 

Now in the finite domain, -$ < x < +, the wavenumber is quantized, i.e. k = nn, 
where n = 1,2,  etc. If the gravest mode, k = x, falls within the interval of instability 
in figure 2 then the conductive solution, A = B = 0, is unstable. I n  fact there is a 
supercritical pitchfork bifurcation from each unstable mode. I n  the next subsection 
we discuss the finite-amplitude development of these instabilities. 
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k k 
FIGURE 2. Summary of the solution of the linear stability problem for the system of amplitude 

equations in (2.29). (a )  r > c2, ( b )  r = c2, (c) r < c2, ( d )  r = 0, ( e )  -c2  < r < 0, (f) r = -c2. 

3 

FIGURE 3. This figure shows the (Ra,O) parameter plane and a comparison of the approximate 
critical Rayleigh numbers (solid curves) with their exact counterparts (dashed curves) for stress- 
free boundary conditions. Our expansion pivots about the point Ra = x4 and cos2 0 = 0 where the 
two Rayleigh-number curves intersect and the approximate curves are tangent t o  the exact curves. 
(a-f) correspond to  parts (a-f) of figure 2. 
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FIGURE 4. Two steady solutions of the amplitude equations (2.29) with r = 0, c = 4.6, p = 1 ,  
y = 0, and p = 0. In (a )  and ( b )  we show the two-dimensional fields for the total (solid line) and 
unperturbed (dashed line) buoyancy. We only show the stream-function field, ( c ) ,  for the ‘direct’ 
circulation because the other state corresponds to the reversed circulation. The two-dimensional 
fields have been reconstructed using d/Z = 0.25, 8 = in and vertical modes appropriate to no-stress 
boundary conditions. 

3.2. Steady-state solutions 
We now turn to the steady nonlinear solutions of the amplitude equations : 

0 = BZz-  (cA -A2), ,  

0 = A,, + rA + (c + A ) &  + y(AZ),-/?. 

Integrating (3 .5a)  we obtain 

(3 .5a)  

(3.5 b )  

A,, + (1. + c Z )  A -A3 + y (A2) ,  -p  = 0, (3 .6a)  

B, = c A - A Z .  (3.6b) 

Thus A satisfies an equation which is identical to  that in Chapman & Proctor (1980) 
(apart from the external forcing represented by /?). The further analytic reduction of 
(3 .6a)  is described in that reference. 

Two solutions of (3.6) are shown in figure 4.  Here we have taken c = 4.6, 
y = /? = r = 0 and solved (2.29) by time stepping with p = 1. Wc then took 8 = 0.25 
and 8 = +IT and reconstructed the leading-order approximations to the stream 
function and buoyancy fields using (2.18) with the F and G appropriate to  slip 
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boundary conditions. (We selected these extreme values of thc perturbation 
parameter values for visual clarity in figure 4.) 

Both the solutions in figure 4 are grave modes (i.e. A(x)  has no internal zeros). 
Some initial conditions cvolve into a steady solution with A > 0, while others fall 
into the steady solution with A < 0, and the two solutions differ by a change in sign 
of A. (Note that when y = p = 0 if A ( x )  is a solution of ( 3 . 6 ~ )  then so is -A(x) . )  All 
of the initial conditions we tried eventually reached one of these two steady states 
and we speculate that these are global attractors for the amplitude equations in 
(2.29). Thus, with the parameters in figure 4, although there arc steady solutions with 
more structure (i.e. A has internal zeros) the numerical evidence suggests that these 
are unstable to larger-scale perturbations. And there was no evidence of sustained 
time dependence, such as limit cycles or chaos. 

We emphasize that there are two distinct grave modes in figure 4. Although the 
two A are related by A ( x )  = -A(x) ,  when c + 0 the B are very different in both 
structure and amplitude. This point is emphasized in figure 4 where we plotted one 
of the two stream functions, but both of the buoyancy fields. The buoyancy field in 
figure 4(c) is ‘anomalous’ in the sense that the corresponding stream function (with 
A ( x )  > 0) consists of a counterclockwise circulation in the tilted slot. This means that 
on the lower sidewall of the slot ( z  = -s) the buoyant fluid is carried downwards, in 
the direction of gravity, by the circulation. Analogous ‘indirect ’ circulation patterns 
have been reported in tilted Lapwood convection by Sen et al. (1988) and Riley & 
Winters (1990). 

Figure 4 shows that the two grave steady solutions have very different buoyancy 
fields because the amplitude of B is very different in the two cases. But this visual 
presentation conceals some underlying similarities between the two flows. For 
instance, the buoyancy gradient parallel to gravity, expressed in terms of A and B, 
is 

Y ( x , z )  g - V B  = ~ ~ ~ ~ + E ~ L x ( & , + A , G - x F A ) + O ( E ~ ) ] .  (3.7) 

For steady solutions we use (3 .6b)  to write B, in terms of A.  If (3 .7)  is then averaged 
across the channel one finds 

g .VBdz = ~ T ( ~ - E ~ L X ~ A ~ + O ( E * ) ) .  

Thus, after averaging across the channel, the destabilizing buoyancy distribution 
which drives convection is the same for the two grave solutions. 

Evolution towards one of the two grave solutions seems to  be a general property 
of the amplitude equations in (2.29). We integrated (2.29) with p = 0,O.l < p < 2,  
-20 < r < 80,O < c < 15,O < y < 7 ,  and found that grave solutions, of the type 
shown in figure 4, are attractors for all the initial conditions we tried. Thus, despite 
its complicated appearance, the system (2.29) exhibits a very simple behaviour in the 
long-time limit. We do not have an analytic proof of this assertion but in the next 
two subsections we discuss special cases in which the system can be reduced 
equations which are known to be generated by Lyapunov functionals. 

We have also done some computations with non-zero p. Once again we find that 
the system always evolves to a steady-stable solution in which A has no internal 
zeros. That is, the gravest modes are apparently universal attractors for all initial 
conditions no matter whether the system is forced ( p  + 0) or unforced (p  = 0). 
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3.3. Behaviour for large p 

If p is very large then B evolves on a much slower timescalc than A and so falls into 
quasi-steady balance. Thus when p $- 1 we adiabatically eliminate the B mode. With 
the aid of (3.6b) the evolution equation for A is thcn : 

pAt  = A, ,+ ( r+c2)A-A3+y(A2) , .  (3.9) 

If y = 0 then (3.9) is the real Ginsburg-Landau equation and using the well-known 
variational argument one can show that all initial conditions eventually evolve into 
the gravest steady solutions. With the ‘advective ’ term proportional to y this 
reasoning fails and we have been unable to prove analytically that (3.9) always 
reaches a steady state. But extensive numerical calculations suggest that this is the 
case. We have integrated (3.9) varying r + c 2  from 0 to 200 and y from 1 to 7 ,  with 
various initial conditions. I n  every case the system evolved to a steady state with no 
internal zeros. 

3.4. Behaviour for large c 

If the tilt of the slot, represented by the parameter c ,  is very large then we recover 
the case analysed by Chapman & Proctor (1980). The system (2.29) reduces to a 
single equation describing the evolution of B. A further assumption is needed to be 
in the Chapman & Proctor limit: the most unstable mode must be only slightly 
supercritical and the Rayleigh number r + c2 must be only slightly greater than zero 
so that as in figure 2(e) there is a damped mode. With these parameter restrictions 
in mind we introduce 

E = c-l 4 1, ,u2 = r+c2 ,  f = EB, r = E 2 t .  (3.10) 

Notice that with the new scaling B is of the same order as c $- 1 ,  while A and ,u are 
O(1). f and A now satisfy 

e4pAr = e2Az,+ (e2p2- ~ ) A + ~ , + E A ~ , + Y E ~ ( A ~ ) , - E ~ P  ( 3 . 1 1 ~ )  

(3.1 1 6) € 2 f r  = f,, - A ,  + E(A2),. 

We now expand A and f in powers of e 

(Af) = (AoLfo) +E(Al’f l )  +. . . (3.12) 

and find a single equation for f o ( x ,  t )  at O(e2) .  At order eo (3.11a) and (3.11 6) are both 

A0 = a,.fo. (3.13) 

At next order, e l ,  ( 3 . 1 1 ~ )  and (3.11b) both give 

A ,  = a,(A;) + % f D  (3.14) 

and we can take fi = 0. The evolution equation for f o  emerges a t  order e2, where 

o = a p o  + P ~ A ,  + y a,A; + A  a,fo - ( A ,  - a,f2) - A  ( 3 . 1 5 ~ )  

a r f o  = ‘ a , ( ’ o f l ) + a , ( a , f 2 - - A 2 ) .  (3.156) 

Eliminating a, f 2 - A 2  from (3.15b), and using (3.13) and (3.14) we finally have 

a r f o  = - ~ ~ a X - a : f o  + a z ( a r f o ) 3 - y a ~ ( a s f o ) 2 ,  (3.16) 

which is the evolution equation of Chapman & Proctor (1980). When y = 0 they 
prove that (3.16) always reaches a stable steady state which is the gravest mode. 
Chapman & Proctor’s numerical integrations indicated that with y 8 0 a stable 
steady state is also reached. 
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3.5. The case of a perfectly vertical do t :  /3 = c = y = 0 

In the case of a perfectly vertical slot with symmetric boundary conditions (c = p = 
y = 0) the amplitude equations in (2.29) reduce to a special case of the system 
obtained by Proctor & Holycr (1986). In this study of thcrmohaline convection the 
extreme aspect ratio of the cclls ('salt fingers') motivates an expansion which is very 
similar to the one presented here. Our case is obtained by suppressing the salinity 
mode, and retaining only one convection mode, in Proctor & Holyer's multi-mode 
system. Once again, our numerical solution indicates that (2.29) always approaches 
one of the two grave steady solutions of (3.5). But with c = 0 the buoyancy fields of 
these two solutions, calculated from (3.6), are identical. 

4. Conclusion 
We have shown how a double expansion, based on both small wavenumbers and 

small departures from 0 = in, leads to a unified framework for describing convection 
driven by imposcd fluxes of buoyancy. The resulting amplitude equations, (2.29), 
govern the evolution of the two modes which are active in this distinguished limit. 

In  certain parts of the parameter space onc of the two modes cvolves on a much 
faster timescale than the other and further analytic reduction is possible. For 
example, as the tilt increases, and the slot becomes closer to horizontal, we recover 
the well-known amplitude equation in ( l . l ) ,  except for the term i3:f2. The missing 
term, which appears in Depassier & Spiegel (1982) and Roberts (1985), is due to 
strongly non-Boussinesq effects such as temperature-dependent viscosity. These 
have not been included in our analysis. 

Numerical integration has led us to speculate that the system in (2.29) always 
evolves to one of the two gravest modes, i.e. eventually there is one convective cell 
which fills the box. This result has been presaged by Chapman & Proctor's numerical 
solution of (1.1) (without the term i3i f2)  but we have been unable to prove that this 
is a general result. 
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Foundation and the Office of Naval Research. We thank Andrew Woods and Yves 
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Appendix A. Coefficients of the amplitude equations 
In this appendix we summarize the calculation of the coefficients of the amplitude 

equations in (2.30). There are three cases depending on the choice of boundary 
condition. 

We begin with the easiest case, which is slip: F"( +t )  = 0. The solution of the 
eigenproblem in (2.19), (2.20) and (2.21) is 

R ,  = n4, F = 2/2cos(xx), G = (42/x)sin(xz).  (A 1) 

Thus P = 22/2/x and a = 2 / 3 / x .  The coefficients in (2.30) are 

y is zero because the eigenfunctions are symmetric about the middle of the slot. 
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Turning now to no slip, the solution of the eigenproblem is in Chandresakhar 
(1961, appendix v). The critical Rayleigh number is 

R, A4 = (4.73004074)4, (A 3) 

where h is the smallest positive solution of tanh (;A) + tan (+A) = 0. The eigenfunctions 
are 

(A 4) 
1 9  

1 sinh(hz) sin (hz) 
G = x  [ -  cosh (;A) cos (+A) 

cash (hz) cos ( A z )  
cosh (;A) cos (;Ah) ' 

-~ F =  

and after some algebra and numerical evaluation we find F = 0.8309, R, G = 49.4812 
and F'2 = 12.3026. With the results above it is easy to numerically evaluate the 
expressions for the coefficients in (2.28) and (2.30). However, there is a simple 
approximation which leads to concise expressions. To within a few per cent h x gn, 
P x 8/3n, p '2x4n and R ,@x 16n. Using these approximations one finds 
a x (128/27n3)i and from the definitions in (2.30) : 

Once again, y is zero because the eigenfunctions are symmetric about the middle of 
the slot. 

The final case is mixed boundary conditions in which there is no slip, F (  -+) = 0, 
on the lower plate and slip, F"(;) = 0, on the upper plate. The eigenfunctions are 

1 1 cosh (pz) cos (pz) sin (pz) sinh (pz) 
2 cash($) cos($) sin($) sinh($) ' 

F = - [  -___ +-- 
sinh(pz) sin(p.z) cos(pz) cosh(p2) 4 
cash($) cos($) sin($) sinh($) +-I p , 

where R, p4 = (3.92660231)4. (A 7)  

p is the smallest positive solution of the tanp  = tanhp. After some algebra and 
numerical evaluation we find F = 0.8600, R,@ = 23.2311 and E"'i = 11.5125. In this 
asymptotic case y does not vanish and is given by 

y x 0.1176Pr-'+0.2058. (A 8) 

Again, it is easy to find concise approximations which are accurate to within a few 
percent. We have p w tn, P = 4(2 + d 2 ) / 5 n ,  R, and F'2 = in.". Using these 
approximations we have a x 16(14/3)1/25n and from the definitions in (2.30) 

= 

Ra - (Zn)4 (1 + cos2 0)  5(2 + d 2 )  (3/14)t cos e p x i(2+Pr-l), T x , cx 
( 14n2/3) e2 4 E  

(A): 5(2 + d 2 )  sin (8 - 0') Ra 
4X2E3 P x  
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Appendix B. Linear stability boundaries 
In this appendix we determine the linear stability boundaries shown in figure 3 for 

arbitrary values of 0. The linearized version of the non-dimensional, unforced 
equations of motion (2.10) is 

Pr-'e2(e2 i3: +a:) +t = (2  a: + $-sin 0 Ra b, - E cos 8lZa b, \ 
(B 1) e2bt = (2 a: +a;) b - sin 0$, - e cos 0$,. 

Substituting [$, b]  = [ & ( z ) ,  6 ( z ) ]  exp (ikz+st) we obtain a system of ordinary 
differential equations for the vertical structure of the buoyancy and stream-function 
perturbations : 

@ V - ~ 2 ( 2 k 2 $ " + ~ P r - 1 $ ) + ~ 4 k 4 $  = Hasin06'+ikeRacos86,'1 
6"-e2(k2+s)6 = sinB&'+ik~cos0&. (B 2) 

We expand &, 6, and Ra in powers of E ,  and to zeroth order in E we obtain : 

$: = R, sin 8bi. b," = sin 014. (B 3) 

When we solve (B 3) for a slip boundary condition and $ = b, = 0 on z = 
that there are two possibilities. One is 

we find 

$, = cos (xz), b, = npl sin 0sin (xz), (B 4) 

which implies that R, sin2 0 = x4. This critical Rayleigh number is shown as a dashed 
curve in figure 3. The other possibility is 

+, = 0, b, = 1 (B 5) 

and the critical Rayleigh number is determined a t  O(e2) .  The stream function is O(e)  
and satisfies 

p;" - R, sin2 07+b1 = ikR, cos 0. 

Defining A4 = R,sin28 the stream function is 

eos ( A t )  cosh ( A z )  
sin2 0 2 cos ($A)  2 cosh ( $ A )  

= - i k e [  1 - - 

In  order to determine the critical Rayleigh number only the equation governing the 
time evolution of the buoyancy perturbation is needed at 0 ( s 2 )  : 

(B 8) bi - sin 0lC.G = k2 + s + ik cos @h1. 

Integrating (B 8) in z and making use of the boundary conditions and the result for 
we obtain 

O = s + k 2 + k 2 ~ o t 2 0  

The stability boundary is obtained requiring that s = 0 and making use of the 
definition of A terms of the Rayleigh number. The curve is shown in figure as dashed. 
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